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Knowledge Graph 
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In-depth overview of Knowledge Graphs in
[Hogan et al. 2020]

Binary relations
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PROTEIN-PROTEIN 
INTERACTION NETWORKS

[ebi.ac.uk]

COLLABORATIVE WEB-
BASED KNOWLEDGE BASES

[lod-cloud.net]

SOCIAL  NETWORKS

[neo4j.com]

https://www.ebi.ac.uk/
http://lod-cloud.net/
https://neo4j.com/blog/graph-of-thrones/
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Knowledge Graphs & The Open World Assumption

• Closed World Assumption (CWA): absence of a fact means it is 
necessarily false.
• Open World Assumption (OWA): absence of a fact does not imply 

fact is false. We simply do not know.
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Knowledgee Graphs
adopt this assumption
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Machine Learning on Knowledge Graphs/
Statistical Relational Learning
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LINK PREDICTION /
TRIPLE CLASSIFICATION
• Knowledge graph completion
• Content recommendation
• Question answering

COLLECTIVE NODE 
CLASSIFICATION / 
LINK-BASED CLUSTERING
• Customer segmentation

ENTITY MATCHING
• Duplicate detection
• Inventory items deduplication

Pic from [Nickel et al. 2016a]

isA

Acme  Inc

Person

isA

worksFor

friendWith

George

likes

FootballTeam

worksFor

Liverpool FC

Liverpool

isA

basedIn City

Mike isA

bornIn

?
basedIn



Machine Learning on Knowledge Graphs/
Statistical Relational Learning
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LINK PREDICTION /
TRIPLE CLASSIFICATION
• Knowledge graph completion
• Content recommendation
• Question answering
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Link Prediction
• Learning to rank problem
• Information retrieval metrics
• No ground truth negatives in test set 

required

Triple Classification
• Binary classification task 
• Binary classification metrics
• Test set requires positives and ground truth 

negatives

Assigning a score proportional to the likelihood that 
an unseen triple is true.
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Traditional Statistical Relational Learning

• Logic Programming: predict new links from facts and extracted rules.
• Inductive Logic Programming (ILP): predict new links from rules extracted from 

correlated facts.
• Rule Mining: e.g. AMIE+: extracts Horn clauses based on their support in the KG.
• Graphical Models: 

• Conditional Random Fields (CRFs)
• Probabilistic Relational Models
• Relational Markov Networks
• Relational Dependency Networks

Limitations
• Limited Scalability to KG size
• Limited modeling power
• Non-differentiable approaches
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[Getoor & Taskar 2007]

[Gallaraga et al. 2015]



Introducing (Graph) Representation Learning

• Manual feature 
engineering on 
graphs is hard and 
time-consuming…

• … what if instead 
we learn
representations of 
nodes and edges?

kge-tutorial-ecai2020.github.io 11Representation 
Learning

Classic machine 
Learning

Pic from [Goodfellow et al. 2016]

Components that 
learn from data



Can we re-use traditional deep learning tools?

• CNNs are designed for grids (e.g. images)
• RNNs/word2vec for sequences (e.g. text)

But graphs are more complex:
• No spatial locality
• No fixed-node ordering (graph isomorphism problem)
• Multimodal (concepts, text, numbers, timestamps, etc.)

We need ad-hoc models!
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From AAAI-19 tutorial on Graph Representation Learning [Hamilton & Tang 2019]



Graph Representation Learning
Learning representations of nodes and edges

Node Representation/Graph Feature based Methods
PRA, LINE, DeepWalk, node2vec

Graph Neural Networks (GNNs)
GCNs, Graph Attention Networks

Knowledge Graph Embeddings (KGE)
TransE, DistMult, ComplEx, ConvE
kge-tutorial-ecai2020.github.io ECAI-20 Tutorial: Knowledge Graph Embeddings: From Theory to Practice 13

ℝ!

…

Mike

George

Liverpool FC

likes

…

Downstream 
Task

Scope of this 
tutorial

For a complete overview of 
graph feature-based models 
and GNNs:
[Hamilton & Sun 2019]
[Hamilton 2020]



Knowledge Graph Embeddings (KGE)
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Automatic, supervised learning of embeddings, i.e. projections of 
entities and relations into a continuous low-dimensional space.
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From Nodes and Edges …
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… To Semantically Meaningful Vector Representations
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(Some) KGE models in recent published literature:

TransE
(Bordes et al., 2013) 

RESCAL
(Nickel et al., 2011)

DistMult
(Yang et al., 2014) 

ComplEx
(Trouillon et al., 2016) 

HolE
(Nickel et al., 2016) 

ConvE
(Dettmers et al., 2017) 

ComplEx-N3 
(Lacroix et al., 2018) 

RotatE 
(Sun et al., 2019) 



KGE Design Rationale: Capture KG Patterns
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Symmetry <Alice marriedTo Bob>

Asymmetry <Alice childOf Jack>

Inversion
<Alice childOf Jack>

<Jack fatherOf Alice>

Composition
<Alice childOf Jack>

<Jack siblingOf Mary>
<Alice nieceOf Mary>

But also:
• Hierarchies
• Type constraints
• Transitivity
• Homophily
• Long-range dependencies
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[Sun et al. 2019]
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At a Glance
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Anatomy of a Knowledge Graph Embedding Model
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[Bordes et al. 2013]

Translation-based Scoring Functions

High score = high changes for the triple to be a true fact.



Translation-based Scoring Functions 

• RotatE: relations modelled as rotations in complex space ℂ: element-
wise product between complex embeddings.
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[Sun et al. 2019]



Factorization-based Scoring  Functions

• RESCAL: low-rank factorization with tensor product

• DistMult: bilinear diagonal model. Dot product.

• ComplEx: Complex Embeddings (Hermitian dot product):
(i.e. extends DistMult with dot product in ℂ)
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[Trouillon et al. 2016]

[Yang et al. 2015]

[Nickel et al. 2011]



“Deeper” Scoring  Functions

• ConvE: reshaping + convolution 

• ConvKB: convolutions and dot product
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[Dettmers et al. 2017]

2D reshaping Linear 
convolution

Non-linearity

Computationally expensive!

[Nguyen et al. 2018]



Other Recent Models

• HolE
• SimplE
• QuatE
• MurP
• …
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[Balaževic ́ et al. 2019]

[Zhang  et al. 2019]

[Kazemi et al. 2018]

[Nickel  et al. 2016]



Pairwise Margin-Based Hinge Loss

Negative Log-Likelihood / Cross Entropy
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Score 
assigned to a

synthetic 
negative

Score 
assigned to 
true triple

Pays a penalty if score of positive triple < score of synthetic negative by a margin 𝛾

[Bordes et al. 2013]

Label of the 
triple t [Trouillon et al. 2016]



Binary Cross-Entropy

Self-Adversarial

Many more: Multiclass Negative Log-likelihood, Absolute Margin, etc.
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[Dettmers et al. 2017]

Weight for the negative 
sample t- [Sun et al. 2019]



Regularizers
• L1, L2 
• L3
• Dropout (ConvE)

Initialization
• Random (Uniform)
• Random (Normal)
• Glorot
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[Lacroix et al. 2018]

[Dettmers et al. 2017]
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Negatives Generation

Where do negative examples come from? (i.e. false facts)

Local Closed World Assumption: the KG is only locally complete 

“Corrupted” versions of a triple as synthetic negatives:

“corrupted subject” “corrupted” object

The predicate is 
unaltered
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Synthetic Negatives: Example
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Training with Synthetic Negatives

Uniform sampling: generate all possible synthetic negatives and 
sample n negatives for each positive t.

Complete set: no sampling. Use all possible synthetic negatives for 
each positive t. (mind scalability)

1-n scoring: batches of (s, p, *) or (*, p, o) labeled as positives (if 
included in training KG) or negatives (if not in training 
KG). 

[Dettmers et al. 2017]



Optimizer: learn optimal parameters (e.g. embeddings). Off-the-shelf SGD variants: 
(AdaGrad, Adam)

Reciprocal Triples
Injection of reciprocal triples in training set. 
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Training Procedure 
and Optimizer

<Alice childOf Jack>
<Jack childOf-1 Alice>

[Dettmers et al. 2017]
[Lacroix et al. 2018]



Model Selection

• Grid search
• Mind the size of the grid!
• Early stopping

• Random search
• Quasi-random + Bayesian 
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[Ruffinelli et a. 2020]
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The Task
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LINK PREDICTION /
TRIPLE CLASSIFICATION
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Link Prediction
• Learning to rank problem
• Information retrieval metrics
• No ground truth negatives in test set required

Triple Classification
• Binary classification task 
• Binary classification metrics
• Test set requires positives and ground truth 

negatives

Assigning a score proportional to the likelihood that 
an unseen triple is true.

Learning–To-Rank problem:
How well are positive triples ranked against synthetic negatives built under 
the Local Closed World Assumption.

Same procedure 
used in training



Evaluation Metrics

Mean Rank (MR)

Mean Reciprocal Rank (MRR)

Hits@N
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Unseen positive 
triples (test set)

How unseen, test positive triples rank against synthetic negatives?



Benchmark Datasets
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Freebase
WordNet YAGO



Link Prediction: SOTA Results
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[https://github.com/Accenture/AmpliGraph] [Ruffinelli et a. 2020]

https://github.com/Accenture/AmpliGraph


Comparing SOTA Results is Tricky

• Different training strategies (e.g. synthetic negatives)
• Reciprocal relations in training set?
• Unfair or suboptimal hyperparameters selection
• Evaluation protocol: how to behave with tie ranks?
• Ablation studies!
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Read discussion in [Ruffinelli et al 2020]
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Calibration
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● Mistrust in model discoveries
● Poor Interpretability in high-stakes scenarios (i.e. drug-target discovery)

How can we calibrate KGE models? How to do so without ground truth negatives?

Logits + logistic 
sigmoid à poor 
calibration

𝑓! " = 0.75 confidence à
model should be correct 
75% of the ]mes.

Probabilities Generated by KGE models are Uncalibrated! [Tabacof & Costabello 2020]
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Calibrating With Ground Truth Negatives
(Available w/ Triple Classification Datasets)

[Tabacof & Costabello 2020]
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Calibrating With Synthetic Negatives
(No Ground Truth Negatives Available)

Calibration

Platt Scaling/ 
Isotonic 

Regression

Calibrated 
ProbabilitiesTrained

KG 
Embedding 

Model
ℝ!

…

Mike
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likes

…

Inference-time 
scores (logits)

−0.25
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−0.13
…

0.12
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…

Ground truth 
positives

AcmeInc isA Company     
AcmeInc basedIn    Liverpool
...           ...        ...

Synthetic Negatives 
Generation

Positive & 
Negative
Triples 

Weighting

: Positive Base Rate 
(User-defined)

Corruption rate

LiverpoolFC isA City       -1
AcmeInc isA Company     1 
George        worksFor   Mike       -1
AcmeInc basedIn    Liverpool   1
...           ...        ...        ...

Calibration dataset
(ground truth positives + 

synthetic negatives)

[Tabacof & Costabello 2020]



Calibration is Effective
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Calibration w/ 
Synthetic Negatives 
almost at par with 

Ground Truth

Isotonic Regression 
beats Platt Scaling

[Tabacof & Costabello 2020]

• All calibration techniques work considerably better than uncalibrated settings
• More trustworthy and interpretable predictions



Multimodal Knowledge Graphs
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description

image

capitalOf

Ireland

Dublin

1.38M
population

Dublin (/ˈdʌblᵻn/, Irish: Baile Átha Cliath [blʲaːˈklʲiəh]) is the capital 
and largest city of Ireland. Dublin is in the province of Leinster on 
Ireland's east coast, at the mouth of the River Liffey. The city has an 
urban area population of 1,345,402. The population of the Greater 
Dublin Area, as of 2016, was 1,904,806 people. Founded as a Viking 
settlement, the Kingdom of Dublin became Ireland's principal city 
following the Norman invasion. The city expanded rapidly from the 
17th century and was briefly the second largest city […]

Many real-world 
graphs includes 
multi-modal 
attributes.

founded

841 A.D.



Multimodal Knowledge Graph Embeddings

• KBLRN
• LiteralE
• MKBE
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[Gesese et al. 2019] surveys recent literature

[Garcia-duran et al.2017]

[Pezeshkpour et al. 2018]

[Kristiadi et al. 2018]

[Pezeshkpour et al. 2018]



Temporal Knowledge Graphs
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consult
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Xi Jinping

Russian Military

Barack 
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2014-03-28

2014-02-18

Angela Merkel

express intent to 
cooperate

2014-08-25

2014-08-29

Timestamped edgeMany real-world 
graphs represents 
timestamped 
concepts.

Table from [Lacroix et al. 2020]



Time Awareness: Temporal KGE models
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TA-DistMult
[García-Durán et al. 2018]

TTransE
[Jiang et al. 2016]

ConT
[Ma et al. 2020]

DE-SimplE
[Goel et al. 2020]

TNTComplEx
[Lacroix et al. 2020]

TNTComplEx
• Embeddings for each timestamp
• Order 4 tensor decomposition problem
• ComplEx as decomposition method

[Lacroix et al. 2020]



Uncertain Knowledge Graphs

UKGE
• Jointly training of KGE model + probabilistic soft logic to predict likelihood of 

unseen triples
• Logical rules are required as additional input
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competesWith

competesWith

CNN_the_new_york

Daily Kos

Washington 
Times

0.86

Northwest
Washington

cityHasCompanyOffice

0.44
0.99

Fact Confidence

Automatic KG 
generation may lead 
to uncertain facts.

[Chen et al. 2019]



Robustness
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[Pezeshkpour et al. 2019]

[Bhardwaj 2020]

KGE suffer from adversarial modifications

Link Prediction

Node Classification



Robustness

Zhang et al. 2019
Generates input perturbations from the latent space by scoring all 
possible perturbations

CRIAGE
Encoder-decoder based inverter neural network 
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[Pezeshkpour et al. 2019]



KGE & Neuro-Symbolic Reasoning

Background knowledge injection with Soft Constraints 
Manually provide rules (or mine with AMIE+) and inject into loss function:
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[Minervini et al. 2017]



KGE & Neuro-Symbolic Reasoning: Neural Theorem Provers (NTP)
• Rule-based models + KGE
• Interplay of KGE strengths (good generalization power, scalability) with rule-based 

interpretability (“small data” capabilities).
• NTP implement reasoning (e.g. backward chaining) in fully differentiable 

architectures
• Symbols replaced by embeddings
• Compare embeddings in Prolog backward chaining instead of matching symbols
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[Minervini et al. 2020]
[Rocktäschel et al. 2017]



Interplay with Other Reasoning Regimes: Analogical Reasoning

ANALOGY
• Models analogical structures in multi-

relational embeddings
• “Differentiable” analogical reasoning 

combined with KGE models
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[Liu et al 2017]



Answering Complex Queries
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Query2box: reasoning over Knowledge Graphs in a vector space using box 
embeddings to answer complex queries.

[Ren et al. 2020]
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Open Research Questions
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MORE EXPRESSIVE 
MODELS

Model KG regularities and
dependencies while 
keeping runtime/space 
complexity low.

SUPPORT FOR 
MULTIMODALITY

Node and edge attributes, 
time-awareness still in their 
infancy.

ROBUSTNESS & 
INTERPRETABILITY

Techniques to dissect, 
investigate, explain, and 
protect from adversarial 
attacks.

BETTER 
BENCHMARKS

Agreed-upon fair 
evaluation protocols, novel 
datasets.

BEYOND LINK 
PREDICTION

Multi-path predictions, 
adoption in larger 
differentiable architectures 
to inject background 
knowledge from graphs.

NEURO-SYMBOLIC 
INTEGRATION

Integrate KGE non-
differentiable reasoning 
regimes to get the best of 
different worlds.
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Industrial applica.ons:

Human Resources: 
Career Paths Prediction

Pharmaceutical Industry: 
Drug Side-effects 
Prediction 

Food & Beverage: 
Flavor Combinations 

Products: 
Product Recommendation
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Drug Development

• Drug Development is a time consuming and expensive process which 
ranges from gene identification, identifying a compound to target the 
gene, and finally experimentation on animals and humans. 

• The initial step of identification of gene/drug takes several years and if not 
identified correctly may result in loss of time and money.

• “Drug Developers” identify the genes/drugs by reading the latest research 
before proceeding with experimentation. But it is highly dependent on the 
experience of the person.

Target 
Identification

Target 
Validation

Pre Clinical 
Trials

Human Clinical 
Trials

Regulatory 
Approvals and 
Manufacturing

7 - 10 years



Drug 
Development

Pharmaceutical Industry: 
Drug Discovery
Drug Side Effect Prediction
Determining risk factors
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Human Resource

• Technology is evolving at an extremely fast pace. People need to 
learn new skills to be relevant in the market.
• Due to automation, a lot of roles are becoming obsolete and 

companies are forced to lay off people.

KGEs can be used for following tasks:
• Suggest new technology/tasks for career progression.
• Recommend similar roles within the organization when existing role 

becomes obsolete.

69
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Human 
Resource

Human Resources: 
Employee Career Progression 
or Transition
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Product Recommendation

KGEs can leverage relation between customers and products.
KGEs can be used for following tasks:

• Recommend new products to customers
• Group customers based on their purchase history
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Product 
Recommendation

Retail:
Product Recommendation
Customer Grouping

friend

friend friend

friend
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Food & Beverage
Manufacturing/Retail: 
- Product reformulation
- Adapting to consumer trends
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Product Reformulation:
- Item substitution based on embedding proximity
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Item Recommendation

• Use vector algebra to find latent region that 
satisfy input criteria 

• Example:
• “I want Indian recipes that contain garlic and 

tomato”

• 𝑛𝑒𝑎𝑟𝑒𝑠𝑡( 𝑎𝑣𝑔 (
)

𝑎𝑣𝑔 𝐺𝐴𝑅𝐿𝐼𝐶, 𝑇𝑂𝑀𝐴𝑇𝑂 −
𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠𝐼𝑛𝑔𝑟𝑒𝑑𝑖𝑒𝑛𝑡, 𝐼𝑛𝑑𝑖𝑎 − 𝑟𝑒𝑐𝑖𝑝𝑒𝑂𝑟𝑖𝑔𝑖𝑛 )

• Note: the above is pseudo-code, actual solutions will 
depend on model, data, fine-tuning, etc

• Alternatively use Bayesian optimization ..
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Graph Construction 

Pancakes, baking powder, 
eggs, all-purpose flour, 
raisins, milk, white sugar

Hummus, olive oil, 
chickpeas, lemon juice, 
tahini, garlic, cumin

…

Garlic, (E)-2-Phenyl-2-butenal, 
Arginine, D-Aspartic acid
L-Leucine, epsilon-Polylysine, 
(±)-erythro-Isoleucine, 
Potassium

…

(+)-delta-Cadinene, 441005, 
herbal, woody, thyme, wood, 
medicine, dry
1,3-Dithiane, 10451, roasted, 
alliaceous

..

Recipe 1, contains, Garlic
Recipe 1, contains, Lemon juice
..

(+)-delta-Cadinene Molecular 
Weight, 204.35 XLogP3-AA, 3.8
Pathway, gossypol biosynthesis
Pathway, lacinilene C 
biosynthesis

..

Garlic, hasCompound, Arginine 
Garlic, hasCompound, L-Leucine
…

(+)-delta-Cadinene, hasOdor, herbal 
(+)-delta-Cadinene, hasOdor, thyme 
…

(+)-delta-Cadinene, hasPathway, gossypol 
(+)-delta-Cadinene, hasPathway, lacinilene
…
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Knowledge 
Graph

Datasets

Data 
processing

Triples



Further reading ..
• BioKEEN: A library for learning and evaluating biological knowledge graph embeddings. Ali, M., Hoyt, C. T., Domingo-Fernández, D., 

Lehmann, J., Jabeen, H., & Wren, J. (2019). Bioinformatics, 35(18), 3538–3540. 

• Benchmark and Best Practices for Biomedical Knowledge Graph Embeddings. Chang, D., Balažević, I., Allen, C., Chawla, D., Brandt, C., & 
Taylor, A. (2020). 167–176. 

• Knowledge Graph Embedding for Ecotoxicological Effect Prediction.  Myklebust, E. B., Jimenez-Ruiz, E., Chen, J., Wolf, R., & Tollefsen, K. 
E. (2019). Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 
Bioinformatics), 11779 LNCS, 490–506.

• Metaresearch Recommendations using Knowledge Graph Embeddings. Henk, V., Vahdati, S., Nayyeri, M., Ali, M., Yazdi, H. S., & 
Lehmann, J. (2019). The AAAI-19 Workshop on Recommender Systems and Natural Language Processing (RecNLP). 

• Product knowledge graph embedding for E-commerce. Xu, D., Ruan, C., Korpeoglu, E., Kumar, S., & Achan, K. (2020). WSDM 2020 -
Proceedings of the 13th International Conference on Web Search and Data Mining, 672–680. 

• Stock Price Movement Prediction from Financial News with Deep Learning and Knowledge Graph Embedding. Yang, W., B, S. G., Raza, 
A., Herbert, D., & Kang, B. (2018). 15th Pacific Rim Knowledge Acquisition Workshop (Vol. 11016). Springer International Publishing. 

• Knowledge Graph-based Event Embedding Framework for Financial Quantitative Investments. Dawei Cheng, Fangzhou Yang, Xiaoyang
Wang, Ying Zhang, and Liqing Zhang. 2020.. In Proceedings of the 43rd International ACM SIGIR Conference on Research and 
Development in Information Retrieval (SIGIR '20). 

• Linking physicians to medical research results via knowledge graph embeddings and twitter. Sadeghi, A., & Lehmann, J. (2020). 
Communications in Computer and Information Science, 1167 CCIS, 622–630. 

• Knowledge graph embeddings with node2vec for item recommendation. Palumbo, E., Rizzo, G., Troncy, R., Baralis, E., Osella, M., & Ferro, 
E. (2018). Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 
Bioinformatics), 11155 LNCS, 117–120.
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Outline
Theoretical Overview

Applications

Software Ecosystem
• Introduction
• What is Out There? 
• Libraries Comparison

• Features
• Scalability
• SOTA Reproduced
• Software Development

• Which Library Should I Use? 
• Questions

Hands-on Sessions
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Mar ‘19

Apr ‘19

OpenKE
May ‘18 Sept ‘19

PyKEEN
Feb ‘20

scikit-kge
Feb ‘16

Pykg2vec
May ‘19

Apr ‘20
Sept ‘19

KGE’s  Software Universe

Date reported is first of the following: pre-release/release/tag, in case where there are none of these the date reported is either submission 
date of a published paper accompanying or induced from repository activity. This is the case for scikit-kge, OpenKE, LibKGE.

2016 2018 2019 2020… …



Libraries 
comparison

… and what we 
measured
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Features

Scalability

SOTA Reproduced

Software Development
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Features

…tware Development

Models

Pre-trained models

Other Features
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Models

TransE DistMult ComplEx TransH TransD TransR RESCAL HolE SimplE Analogy ConvKB ConvE

OpenKE

AmpliGraph

PyTorch
BigGraph

GraphVite

DGL-KE

PyKEEN

Pykg2vec

Lib-KGE

scikit-kge

https://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/ICLR2015_updated.pdf
http://proceedings.mlr.press/v48/trouillon16.pdf
https://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/viewFile/8531/8546
http://anthology.aclweb.org/P/P15/P15-1067.pdf
https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/viewFile/9571/9523/
http://www.icml-2011.org/papers/438_icmlpaper.pdf
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/viewFile/12484/11828
https://papers.nips.cc/paper/7682-simple-embedding-for-link-prediction-in-knowledge-graphs.pdf
http://proceedings.mlr.press/v70/liu17d/liu17d.pdf
https://www.aclweb.org/anthology/N18-2053/
https://arxiv.org/abs/1707.01476
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RotatE QuatE KG2E NTN ProjE RGCN TuckER TransM CP Other models

OpenKE

AmpliGraph

PyTorch
BigGraph

GraphVite

DGL-KE

PyKEEN Complex /DistMultLiteral, ERMLP, 
StructuredEmbedding, SME

Pykg2vec SLM, SME, ComplexN3

Lib-KGE

scikit-kge ERMLP

https://arxiv.org/pdf/1902.10197.pdf
https://papers.nips.cc/paper/8541-quaternion-knowledge-graph-embeddings.pdf
https://www.semanticscholar.org/paper/Transition-based-Knowledge-Graph-Embedding-with-Fan-Zhou/0dddf37145689e5f2899f8081d9971882e6ff1e9?p2df
https://papers.nips.cc/paper/5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion.pdf
https://arxiv.org/abs/1611.05425
https://arxiv.org/abs/1703.06103
https://arxiv.org/pdf/1901.09590.pdf
https://www.semanticscholar.org/paper/Transition-based-Knowledge-Graph-Embedding-with-Fan-Zhou/0dddf37145689e5f2899f8081d9971882e6ff1e9?p2df
http://proceedings.mlr.press/v80/lacroix18a/lacroix18a.pdf
https://arxiv.org/pdf/1802.00934.pdf
https://dl.acm.org/doi/10.1145/2623330.2623623
https://www.researchgate.net/publication/221603581_Learning_Structured_Embeddings_of_Knowledge_Bases
http://www.thespermwhale.com/jaseweston/papers/ebrm_mlj.pdf
https://nlp.stanford.edu/pubs/SocherChenManningNg_NIPS2013.pdf
http://www.thespermwhale.com/jaseweston/papers/ebrm_mlj.pdf
http://proceedings.mlr.press/v48/trouillon16.pdf
https://dl.acm.org/doi/10.1145/2623330.2623623
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WikiData dump Freebase Benchmark datasets

OpenKE link (fragment ?)

AmpliGraph (upon request)

PyTorch
BigGraph (full)

GraphVite (Wikidata5m)

DGL-KE

PyKEEN

Pykg2vec

Lib-KGE (Wikidata5M) link

scikit-kge

OpenKE requires submitting your name, email and organization before download.
? The size of this embedding suggest it is a fragment.

Pre-trained Models

https://www.wikidata.org/wiki/Wikidata:Main_Page
http://139.129.163.161/download/wikidata
http://139.129.163.161/download/freebase
https://torchbiggraph.readthedocs.io/en/latest/pretrained_embeddings.html
https://graphvite.io/docs/latest/pretrained_model.html
https://github.com/uma-pi1/kge
https://github.com/uma-pi1/kge


Other Features
• OpenKE

• C++ implementation.

• AmpliGraph
• Benchmarking Aid and pre-processing.
• Formats: rdf, csv, ntriples.
• Knowledge discovery API.
• Visualization.
• Model selection API.
• Slack.
• Colab Tutorials.

• PBG
• High-level operators.
• Scalability (partitioning, experimental GPU).

• DGL-KE
• Scalability (partitioning with METIS, faster than GraphVite and 

PBG).

• PyKEEN
• Incorporating multi-modal information.
• Extensibility (wide range of interchangeable components).
• Hyperparameters support (Optuna).

• Pykg2vec
• Metrics summary plots.
• Automatic discovery for hyperparameters.
• Interactive results inspector.

• Lib-KGE
• Hyper param support  (includes Bayesian Optimization).
• Resuming training.
• Configuration via yaml.

• GraphVite
• Command line interface.
• Visualization.
• Configuration via yaml.
• Auto-deduction of hyperparameters.
• Scalability (GPU-CPU hybrid).
• Node Embedding API.
• Input data parser.

*scikit-kge is not listed here as it was discontinued
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Scalability

Software Development



Scalability
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Core Framework GPU Distributed Execution CPU Biggest Graph

OpenKE PyTorch/Tensorflow 108 edges, 4x107 nodes [3]

AmpliGraph Tensorflow (Coming) 108 edges, 106 nodes [1]

PyTorch BigGraph PyTorch 2.4x1012 edges, 1.21x108 nodes [4]

GraphVite PyTorch (GPU-CPU) 1.8x1012 edges, 6.6x106 nodes  [9]

DGL-KE PyTorch 3.38x108 edges, 8.6x106 nodes [8]

PyKEEN PyTorch -

Pykg2vec PyTorch/Tensorflow -

Lib-KGE PyTorch -

scikit-kge - -
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Scalability

SOTA Reproduced

Software Development



SOTA Reproduced
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OpenKE PBG AmpliGraph GraphVite DGL-KE PyKEEN Pykg2vec Lib-KGE scikit-kge

SOTA 
reproduced

Models 
reported 8/10 2/41 6/6 6/6 6/6 0/22? 10/22 9/9 5/52

1 page 8, Lerer et. al. 2019.
2 page 6, Nickel et. al. 2015.
? Not found.

https://github.com/thunlp/OpenKE
https://docs.ampligraph.org/en/1.3.2/experiments.html
https://graphvite.io/docs/latest/benchmark
https://pykg2vec.readthedocs.io/en/latest/kge.html
https://pykg2vec.readthedocs.io/en/latest/kge.html
https://pykg2vec.readthedocs.io/en/latest/kge.html
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Scalability

Software Development



• Documentation (docstr-coverage) - PEP 257
• Counts number of functions, classes, methods, and modules that doesn't have docstrings.

• Tests (coverage) 
• measures how many lines out of the executable lines were executed.

• Good practices (pylint) PEP 8
Formula: 10.0 - ((float(5 * error + warning + refactor + convention) / statement) * 10)

• Code Complexity (radon) – McCabe Complexity
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Software Development Metrics

Class A B C D

Number 1-10 10-20 20-40 40+

Code Well written 
and structured

Complex Code Very Complex 
Code

Extremely 
Complex Code

Testability High Medium Low Not Testable

Maintenance 
Cost and Effort

Less Medium High Very High
source

https://pypi.org/project/docstr-coverage/
https://www.python.org/dev/peps/pep-0257/
https://pypi.org/project/coverage/
https://coverage.readthedocs.io/en/coverage-5.2.1/howitworks.html
https://pypi.org/project/pylint/
https://www.python.org/dev/peps/pep-0008/
http://pylint.pycqa.org/en/latest/faq.html
https://pypi.org/project/radon/
https://www.guru99.com/cyclomatic-complexity.html


Software Development Metrics

0

50

100

Documentation Coverage [%]

OpenKE AmpliGraph PBG Graph-Vite

PyKEEN Pykg2vec Lib-KGE scikit-kge
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Which Library Should I Use?

Align your choice with:
• Your task and time that you have for learning the library.
• Your experience.
• Framework the library supports Pytorch/Tensorflow/other?.
• Consider features like scalability, community support, user-friendliness, 

maturity of the project, accuracy, and supported addons.
• Finally: The choice is yours.

Use tools like github-statistics to support yourself.
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https://vesoft-inc.github.io/github-statistics/


Thank you!
Knowledge Graph Embeddings: From Theory to Practice

Software Ecosystem

adrianna.janik@accenture.com
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Resources:

• AmpliGraph
• Libkge
• Graphvite
• DGL-KE
• Pykeen
• Pykg2vec
• OpenKE
• scikit-kge
• PyTorch-BigGraph
• github-statistics
• Article on how to compare repos
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https://github.com/Accenture/AmpliGraph
https://graphvite.io/
https://github.com/awslabs/dgl-ke
https://pykeen.github.io/
https://github.com/Sujit-O/pykg2vec
http://139.129.163.161/
https://github.com/mnick/scikit-kge
https://github.com/facebookresearch/PyTorch-BigGraph
https://vesoft-inc.github.io/github-statistics/
https://dev.to/nebulagraph/compare-similar-github-projects-with-this-github-stats-tool-1n3e
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Outline
Theoretical Overview 1h 30m

• Introduction
• Anatomy of a Knowledge Graph Embedding Model
• Evaluation Protocol and Metrics
• Advanced KGE Topics
• Open Research Questions

Applications 15 m

Software Ecosystem 15 m

Hands-on Session 1h 15m
bit.ly/kge-tutorial
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